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Germany
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Abstract. A new method is presented for the study of the structure of the energy hypersurface
of continuous systems. This so-called threshold algorithm is an adaptation of the ‘lid method’
introduced by Sibani and co-workers in 1993 (Sibani Pet al 1993Europhys. Lett.22 479–85)
for the investigation of discrete energy landscapes. The algorithm produces an estimate of the
local densities of states near deep-lying local minima of the potential energy of the system
together with the barrier heights around these minima. This allows the computation of, for
example, specific heats, the estimation of the kinetic stability of configurations that represent
metastable minima of the potential energy, and the description of the relaxation behaviour of
the system. As an example, a two-dimensional neon crystal is studied, where for example the
calculated specific heat is found to agree with the experimental values of the three-dimensional
case scaled to two dimensions.

1. Introduction

In the fields of physics, chemistry or combinatorial optimization, the energy or cost as
a function of the possible states of a system or solutions of some optimization problem,
respectively, is a central quantity. Knowledge of this energy function allows the application
of equilibrium statistical mechanics to the evaluation of the global equilibrium properties of
the system. However, the detailed behaviour of a given system as a function of time depends
crucially on the dynamics that describes its trajectories through state space. This dynamics
is reflected in the neighbourhood structure of the state space, i.e., the ‘list’ of possible states
that could be reached from a given state. In physical systems, this neighbourhood structure
is usually implicit in the laws and assumptions of classical or quantum mechanics, while in
optimization problems we actually make a considerable effort to design a good such ‘list’,
often called a ‘moveclass’, in order to improve the optimization process.

If this energy landscape is simple enough that the typical trajectories of the system
can ‘reach’ a representative sample of the whole state space within a given amount of
time, then time averages of thermodynamic quantities along such trajectories will be equal
to the ensemble averages over the whole state space, i.e., the system is ergodic. On the
other hand, many systems exhibit non-trivial energy landscapes; among the most prominent
ones are, e.g., glasses, spin glasses, and hard optimization problems like the ‘travelling
salesman problem’. The behaviour of such systems has been a major area of research for
a long time [2, 3, 4, 5]. They often do not fulfil the ergodic hypothesis, at least on the
time-scale of interest, i.e. they are not in or near global equilibrium. For a given instance
of the system, only a small (non-representative) region of the total phase space (usually
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delimited by energetic or entropic barriers) is accessible within this time, and the observed
‘equilibrium’ properties of the system depend on the free energy restricted to this region.
Furthermore, the time evolution of such a system usually cannot be described by a simple
(e.g. exponential) relaxation to global equilibrium. Instead, the dynamics (especially at low
temperatures) is highly sensitive to the barrier structure of the energy landscape, leading to
power-law behaviour of time correlation functions, for example.

In order to understand and predict such a system’s properties, both with respect to
‘local equilibrium’ and dynamics, it is therefore necessary to know the barrier structure of
the energy landscape, and also the local density(ies) of states for the accessible region(s) of
configuration space. In recognition of this fact, several methods have been introduced in
recent years for the study of the energy landscape of complex systems, like the Coulomb
glass [6, 7], clusters [8, 9, 10, 11, 12, 13], spin glasses [14, 15, 16], combinatorial
optimization problems [1, 17, 18, 19, 20, 21], seismology [22, 23], and the protein folding
problem [24].

For those systems exhibiting a discrete configuration space, Sibaniet al [1] have
introduced the so-called ‘lid method’. Starting from a deep-lying minimum, the pocket in
configuration space that can be reached from the starting point without crossing a prescribed
energy lid is searched exhaustively, and all the connections among the states within the
pocket are noted. Thus, the local density of states, i.e. the density of states restricted
to this pocket in state space, together with the energy barriers between the local minima
within the pocket can be determined. On the basis of these results, the statistical mechanical
properties of the system can be studied, as long as it remains within the prescribed region of
phase space. In addition, this detailed knowledge of the energy landscape near a deep-lying
minimum allows the calculation of the relaxation behaviour within this pocket. Originally
tested on the example of the ‘travelling salesman problem’ [1], this procedure has since
been applied to the investigation of spin glasses [14, 16].

The details and power of this algorithm depend on the discreteness of the configuration
space, with its clear definition of the neighbourhood of a given state. Even in studying
large spin glasses using statistical measures for the distribution of local minima [16], such
a controllable configuration space and moveclass prove to be quite helpful.

In contrast to these systems, amorphous materials exhibit a continuous energy landscape.
Already, many simple models based on assumptions about the barrier structure of the
landscape are employed for some aspects of such systems [25, 26]. Clearly, more direct
and detailed knowledge about such landscapes would prove to be highly useful. But any
straightforward discretizations of their configuration spaces tend to be either prohibitively
expensive in computer resources or so rough that the conclusions one would draw about
the distribution of the minima and their connectivity would have to be highly tenuous.

In this paper, we address this problem by presenting an adaptation of the ‘lid method’
to the study of continuous energy landscapes. Again, deep-lying minima are found using
global optimization methods. These minima serve as starting points for random walks
below a sequence of energy lids, exploring the accessible region of configuration space.
Furthermore, keeping track of the energies of the states visited during the random walk
yields a sample of the local density of states.

After giving a detailed description of the algorithm in section 2, we demonstrate in
section 3 how to proceed in modelling the dynamic behaviour of such a system, on the
basis of the knowledge of the barrier structure and the local densities of states. Finally,
in section 4, we illustrate the procedure through an example—a study of the region near
the global minimum of the energy landscape belonging to a single (two-dimensional) layer
of neon containing point defects. In addition to investigating the barrier structure and the
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relaxation behaviour in this pocket, we show that the estimate of the density of states leads
to a specific heat that agrees well with expectations.

2. The threshold algorithm

The first step of the procedure is the determination of one or more local minima of the
energy landscape,xi . This can be achieved by a large number of methods [27]; since these
are well known, we will not discuss them in any detail. Each of these minima serves as
a starting point for a sequence of ‘threshold’ runs. Just like in the ‘lid method’, a set of
energy lids are chosen, which lie above the energy of the minimum under consideration. In
the case of a discrete energy landscape, it would now be possible to begin an exhaustive
search for the configurations that can be reached from the minimum along paths that do not
cross the energy lid. Since in the continuous case the number of states below any lid is
infinite for all practical purposes, even if one were to discretize the phase space in boxes
of h(N), this exhaustive search procedure could not be applied directly.

Thus, instead of trying for complete information about the energy landscape within
the pocket right away, we need to proceed in steps. Focusing on the determination of
the energy barriers and the local densities of states, we propose to replace the exhaustive
search by a statistical one in the following manner: starting from the local minimum under
consideration,x0, a random walk with a physically reasonable moveclass† is performed,
where every step is accepted as long as the prescribed energy threshold,L, is not crossed.
During this walk, the energy landscape is sampled, and the number of states with energy
E accessible fromx0 using paths below the lid,n(E; L, x0), can be estimated up to a scale
factor. If the number of samples is sufficiently large,n(E; L, x0) agrees with the density
of states within the pocket,g(E; L, x0), up to the missing normalization factor. Clearly,
for L → ∞ this local density of states becomes identical to the global density of states,
g(E; L → ∞, x0) → g(E), since then the pocket would encompass the whole state space.
The sampling should take place at large intervals in order to exclude correlations as much
as possible. Such a random walk would be termed a single ‘threshold run’.

In addition, at the end of the run, the system is quenched into the nearest local minimum.
Of course, additional quenches can take place during the threshold run, if so desired. For
lid values just above the energy of the starting minimum, the quench will always return the
system into its starting configuration. This will change upon increasing the threshold, and
at some point, a quench run will end in a minimumx1 different from the starting pointx0.
The lowest lid value where this occurs is thus an upper bound for the height of the energy
barrier between these two local minima.

We perform such threshold runs for all chosen values of the energy lid, using as starting
points all local minima encountered during the original minimization or any of the preceding
threshold runs. This is important for the determination of the barrier heights, since in most
instances one tends to get better bounds by starting from a higher local minimum, which
commonly ‘owns’ a smaller basin in phase space, i.e. a smaller region around the minimum
before the first saddle point is reached. In order to achieve some measure for the statistical
distribution of the results, both as far as the density of states is concerned and with respect
to the distribution of local minima, we repeat each threshold run for a given energy lid and
starting point.

† The moveclass is the set of neighbouring configurations in phase space that can be reached from a given point
with one step of the random walk. A physically reasonable moveclass allows only those moves of the system that
might occur during the regular time evolution of the system, e.g., small displacements of atoms in a solid.
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3. The lumped model and relaxation behaviour

Obviously, the above procedure results in a tree-like barrier structure. Since the number of
states available grows very fast with energy, the system will spend most of the random walk
within the region of phase space with energies just below the lid†. Thus, for most realistic
systems, a random walk of affordable length will not sample enough of the relatively rare
low-lying states to allow us to draw satisfactory conclusions fromn(E; L, x0) about the
functional form ofg(E; L, x0). A solution to this problem consists in using the overlap
of the distributionsn(E; L, x0) for different energy lids to determineg(E; L, x0) for high
values of the thresholdL. As long as no additional minima with their concomitant states
are added while proceeding from lidLi to lid Li + 1 > Li , no special problems arise by
using the overlap procedure for boot-strapping, and the density of states can be estimated
up to the missing normalization factor.

However, if such a new region becomes suddenly accessible atLk, a larger number of
low-lying states belowLk−1 are now represented in the samplingn(E; Lk, x0) than had been
available forn(E; Lk−1, x0). Thus, one has to correct for this effect when using the overlap
procedure. Since each sample lacks an overall normalization, this step is usually not trivial‡.
However, in those regions of phase space that are dominated by one large minimum, e.g.x0,
the correction due to the contributions of the side minima tog(E; L, x0) will be small. On
the other hand, any process, e.g. a relaxation, starting from a side minimumx1, will only
show a dependence onx1 for the time during which the system remains in the basin ofx1,
which is a function ofn(E; L, x1) ∝ g(E; L, x1) for L < Lk.

The combination of all the local densities of states,g(E; L, xi), represents a lumped
picture of the phase space of the system. This description is intermediate between the
overall density of states for the whole pocketg(E; Lmax) and the exhaustive description of
every microscopic detail of the energy landscape within the pocket that one can achieve in
the discrete case. With this information, it is possible to construct a transition matrixM(T )

in the lumped configuration space (cf. the appendix). This matrix allows the simulation
of the evolution of the system for temperatureT , especially its approach to equilibrium.
In particular, this information connects the numerical results for a particular system to the
growing body of work on hierarchical structures of phase spaces and diffusion processes on
tree-like graphs [28–35].

In particular, one can calculate the time it takes for the local minima to equilibrate for
different temperatures. In all instances, the system is prepared in a single node, i.e., all
probability (=one unit) is initially placed into one of the local minima. The sequence of
equilibrations among the minima can be represented by an ‘equilibration/merger tree’ [1].

While the major features of the equilibration trees, e.g. the sequence of mergers,
are usually independent of the starting point and the temperature, the time-scales for
equilibration will clearly depend on temperature. In particular, for temperatures much
higher than the energy difference between the highest lid and the ground state, the observed
equilibration time reflects the time the system needs to reach all parts of the available phase
space. Defining an effective diameter of the system,deff , as the length of the longest path

† One should note that the highest thresholds used are often well above the highest barriers in the system. Thus,
the bottlenecks, which for a low-energy lid can occur because of the relatively small number of paths available
across a saddle point, are no longer critical, and each individual threshold run tends to be extensive enough to
sample the whole of the available piece of the energy landscape. As a consequence, the distribution of local
minima found upon quenching will no longer depend on the starting minimum of the threshold run(s).
‡ If it is possible to calculate the matrix of second derivatives for each minimum analytically, one can find the
normal modes and use their densities of states to determine the missing normalization factor for each minimum.
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within the set of shortest paths between any two states of the system, we can assume that
for simple barrier structures the equilibration timeτeq will be proportional todeff . Note that
this allows us to determine a measure of the ‘compactness’ of the (lumped) phase space,
deff = f (V ), by plotting τeq as a function of phase-space volumeV .

4. Example: a single layer of neon (on a two-dimensional surface)

4.1. The configuration space and moveclass

In order to illustrate the method described in the previous section, we have chosen to
investigate a single layer of solid neon. Using a standard Lennard-Jones potential for the
pairwise interaction between the atoms (σ = 2.75 Å, ε = 0.003 68 eV), the potential energy
per particle is given by

e = E

N
= 1

N

∑
〈i,j〉

ε

((σ

r

)12
−

(σ

r

)6
)

+ pv. (1)

Here, we have included for the sake of completeness a termpv (v = volume per atom),
since we allow volume changes during the determination of both the local minima and
the threshold runs. All calculations were performed forp = 0; thus the total energy
Etotal = Epot + Ekin agreed with the enthalpyH . In order to deal with surface effects, we
have chosen to apply periodic boundary conditions to the simulation cell. The number of
atoms within the simulation cell wasN = 16. Thus, the configuration space of the system
is parametrized by the vectors describing the (repeated) simulation cell, and the coordinates
of the atoms within this cell.

In order to determine the global minimum, we employed simulated annealing, followed
by a quench and a gradient descent for the final adjustment of the coordinates. The
moveclass used during the optimization allowed for random movements of the sixteen
individual atoms and the variation of the size and shape of the simulation cell. The ground
state was found to consist of a close packing of the neon atoms. Local minima of the energy
corresponded to one or more vacancies within such a hexagonal packing. Of course, due to
the periodic boundary conditions, the vacancies were present in each copy of the simulation
cell. Thus, there existed a finite gap in the energy/atom between the ground state and a
given vacancy structure.

4.2. The barrier structure

During the threshold runs, the moveclass employed was the same as during the global
optimization runs. The lid energy was varied fromL = −3.07 meV toLmax = −2.27 meV
in steps of1Egrid = 10−4 eV. The highest lid value was chosen such as to remain slightly
below the estimated melting point for two-dimensional neon(1(Lmax) = Lmax −Eground =
0.83 meV< 1.1 meV' T = 13 K). Six different local minima were found during the runs
and subsequently used as starting points (table 1).

For each minimum and each value of the lid energy, 30 threshold runs of length 500 000
steps were performed. From the results of the quenches at the end of these runs [36], we
can deduce the barrier structure shown in figure 1.

As has been pointed out in section 2, the algorithm yields upper bounds on the height
of the highest point along the lowest path between two minima, with respect to the energy
of the starting local minimum. The best bounds on the barrier heights were found during
runs starting in the high-lying minima. Since a simple system was used as an example, no
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Table 1. A list of the main local minima in the two-dimensional neon crystal with 16 atoms
per simulation cell.

Description;d = centre–centre distance of Energy per atom
Name vacancies(R = rNe = 1.54 Å) (meV)

x0 Ground state −3.10
x1 One vacancy per cell;d > 4

√
3 R (in next cell!) −2.90

x2a Two vacancies per cell;d = 2 R −2.73
x2b Two vacancies per cell;d = 2

√
3 R −2.67

x2c Two vacancies per cell,d = 4 R −2.67
x2d Two vacancies per cell;d = 4

√
2 R −2.67

Figure 1. A tree diagram of the energy barrier structure of the two-dimensional neon crystal.
Barrier heights are given in meV per atom. For the description of the minima, see table 1.

complicated barrier structure was found. Once the system could leave the local basin, paths
were available to reach the main part of the pocket, which was connected to the ground
state.

4.3. Local densities of states

In addition, the energy landscape was sampled during the threshold runs. The interval
between samples was chosen to be 1000 steps, in order to exclude correlations as far as
possible. The results forn(E; L, x) are summarized in figure 2(a) for the most important
case,x = x0. Since the number of states grows very fast with energy, the registered
energies tend to be concentrated below the lid. In order to derive a density of states from
these results, we note that for successive lid valuesLk, Lk+1 there exists a considerable
overlap betweenn(E; Lk, x0) and n(E; Lk+1, x0). Using this overlap, we can determine
g(E; L, x0) even for high values ofL, up to a normalization factor. Figure 2(b) shows
g(E; L, xi) for the highest lid valueL = −2.27 meV for all starting pointsxi . The large
jump in the number of accessible states, which occurs when joining the main region of the
pocket from a high-lying basin, is clearly visible. The actual size of the jump cannot be
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Figure 2. (a) Sampled densities of statesn(E; L, x0) for a sequence of lid values. The starting
point was the minimumx0. (b) The local densities of statesg(E; L, xi). White squares corres-
pond tox0, white diamonds tox1, white triangles tox2a , black squares tox2b, black triangles
to x2c, and black diamonds tox2d . (c) The density of statesh(E) including kinetic degrees of
freedom.

determined directly, since the normalization factors of the two basins need not be identical
(cf. section 3).

So far, we have only determined the density of states belonging to the potential energy
of the system,g ≡ gpot . In order to calculate statistical mechanical properties, we need to



150 J C Sch¨on et al

include the contribution of the kinetic energy. Within the classical picture we have been
using, this is straightforward, since we can splitEtotal into a sum of potential and kinetic
energy. The potential energy depends only on the coordinates, and its density of states has
been calculated above. The contribution of the kinetic energy depends only on the momenta
of the particles, like in the ideal gas, and the ‘kinetic’ density of statesgkin is therefore easily
evaluated [37]. The convolution of these contributions determines the required density of
statesh(Etotal; L, x0) as a function of the total energy, up to a normalization factor:

h(E) =
E∑

E′=0

gpot (E
′)gkin(E − E′). (2)

In equation (2), the ground state of the system was used to define the zero of the energy
scale. The result is shown in figure 2(c) for the starting minimumx0.

From this, we can now compute [37], forp = 0, the average enthalpy (figure 3(a)) for
several values of the lidL (D(L) = L − Eground = 0.23 meV, 0.43 meV, 0.83 meV) and

Figure 3. (a) The average enthalpyH as a function of temperatureT . White squares correspond
to a lid with energyL − E(x0) = 0.83 meV above the ground state, white diamonds to
L − E(x0) = 0.43 meV, and white triangles toL − E(x0) = 0.23 meV. (b) Specific heat
Cp as a function of temperatureT .
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the specific heat (figure 3(b)) as a function of temperature(D(L) = 0.83 meV). The width
of the energy slices used for the construction of theh(E) was1E = 10−5 eV.

We note that only those quantities that do not require knowledge of the overall
normalization of the density of states can be calculated. Fortunately, this is sufficient
for many expectation values of interest. Furthermore, the results (figure 3(a)) depend on
the height of the lid above the ground state,D(L) = L − Eground , and on the width of
the energy slices1E used for the binning of the sampledn(E; L, x): if T > D(L), then
〈H 〉 ≈ D(L) = constant. Similarly, ifT 6 1E, 〈H 〉 ≈ 0 = constant. From classical
arguments one would expect that the specific heat of two-dimensional neon should be two
thirds of the value for the three-dimensional case. These classical arguments appear to be
quite reasonable, since the average experimental [38] valueC3d

p (exp) = 25 J K−1 mol−1 is in
good agreement with the derived valueC3d

p (class) = 24.94 J K−1 mol−1. Thus, the expected
value in the two-dimensional case should beC2d

p (class) = 16.67 J K−1 mol−1, which agrees
very nicely with our calculated valueC2d

p (calc) ≈ 17 J K−1 mol−1. Finally, we point out
that the results presented in figures 3(a) and 3(b) are based on a classical approximation that
will no longer hold for very low temperatures. However, the basic approach presented here
should be applicable even to quantum systems as long as tunnelling through the barriers
may be neglected.

Figure 4. Equilibration trees for different starting points. The equilibration timeτeq is given by
the number of multiplications byM(T ) necessary to reach equilibrium with accuracya = 10−5.
The tree ‘1’ is found for starting pointx0, tree ‘2’ for starting pointx1, tree ‘3’ for starting point
x2a , and tree ‘4’= tree ‘5’ = tree ‘6’, for starting pointsx2b, x2c, x2d , respectively. Within
each tree, the branches are labelled accordingly. The numbers where they merge indicate the
equilibration time.
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4.4. Relaxation behaviour

Following the procedure outlined in the appendix and section 3, we have derived a lumped
description of the system from the local densities of states, where we have used slices of
width 1E = 3 × 10−5 eV to form the nodes of the tree. This value was chosen, since the
distribution of energy differences per move was sharply peaked at 0 eV, and approximately
90% of the steps showed an energy difference below 3×10−5 eV. Thus, this choice allowed
us to restrict the connections among nodes to those belonging to successive energy slices.
In addition, it was estimated from this step size distribution that for about a third of the
time, a move (atT = ∞) should have led to a point within the same node, i.e.fii = 1/3
for all nodesi except the top node.

After constructing the transition matrixM(T ) in the lumped configuration space, we have
calculated the time it takes for the local minima to equilibrate for different temperatures. In
all instances, the system was prepared in a single node, i.e., all probability (=one unit) was
initially placed into one of the local minima. The set of the resulting equilibration trees for
T = 5 × 10−6 eV is depicted in figure 4.

Figure 5. The time necessary for full equilibration of the systemτeq to be achieved as a function
of temperatureT .

Note that the major features of the equilibration trees are independent of the starting
point: minimumx1 always takes the longest to merge with the rest of the pocket, indicating a
relatively high stability of this configuration, while the minimax2b, x2c andx2d equilibrate
rather quickly among themselves. In order to understand the detailed structure of such
equilibration trees, it is necessary to analyse the individual probability flows among the
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minima, taking into account both the energy barriers and the size of the basins, i.e. the
phase-space volume ‘belonging’ to each minimum.

In figure 5, we show the time that the system needs to achieve full equilibration as
a function of temperature. We note that there is a plateau forT > 10−3 eV. This is no
surprise, since for the given maximum lid of 0.83 meV above the ground state, this range of
T corresponds to infinity, for all practical purposes. Plottingτeq as a function of phase-space
volumeV for T = 1 eV, we findteq ∝ V γ , with γ ≈ 0.25.

5. Summary and outlook

We have presented a method for the study of complex multi-minima systems which allows
the determination of barrier heights among the minima and the construction of a simplified
‘lumped’ model of the configuration space. On the basis of such a model, equilibrium and
relaxation behaviour of the system may be investigated. As an example, we have studied
neon in two dimensions containing vacancies. By now, this method has already been applied
to the determination of the heights of barriers surrounding metastable structures in the Na–Cl
system [39].

Clearly, many possibilities for improving and refining the method presented above
come to mind. One intriguing option might be to use techniques used by researchers
studying the energy hypersurface of continuous systems, e.g. clusters, with the help of
molecular dynamics methods [9, 12, 40]. After finding local minima through quenches
during molecular dynamics runs, some saddle points between these minima are determined
with the use of algorithms like the steepest-ascent method, the method of slowest slides,
and ‘eigenvector following’ in order to identify the saddle points [41, 42]. As long as an
analytical form of the energy function and its derivatives are known, these methods can be
applied†, and they could be used for the determination of saddle points, in order to associate
special configurations with the barriers found by using the threshold algorithm. This would
lead to a further, intuitive understanding of the time evolution of a given material.
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Appendix. Modelling the relaxation behaviour using local densities of states

The diffusion of probability in configuration/phase space is a possible way of viewing the
time evolution of a system in contact with a heat bath at temperatureT . If the state space of
the system is discrete, and the moveclass (=connections between nodes of the configuration
space) is known, this diffusion can be modelled as a discrete Markov process with a certain
transition matrix. Repeated application of this matrix to an initial state of the system leads
to a probability distribution that corresponds to the expected outcomes of the time evolution

† A note of caution should be sounded, however: in many situations, these analytical energy functions and/or
their derivatives are not accessible. In addition, just as gradient methods cannot guarantee the determination of
the deepest minima during a global optimization, analytical methods that depend on local information may not
discover all of the important saddle points.
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of the system. For a continuous state space, this matrix multiplication may be replaced by
an integration of the initial distribution with the appropriate transition kernel.

However, in most examples of interest, one does not know this kernel exactly. In our
particular example, only an estimate of the local densities of statesg(E; L, xi) together
with a distribution of the energy differencesδE encountered during the random walks in
configuration space below the lidL are available. From this information, one can construct
a ‘lumped’ model of the configuration space, and subsequently a transition matrix for the
diffusion on this graph. The suggested procedure outlined below is in some aspects similar
to one proposed by Nulton [43] previously, and to the models used for the analysis of
simulated annealing [44].

(1) Choose the width of energy slice1E for the creation of a lumped model of the
configuration space. All the states in the interval [E, E + 1E] that belong to the basin of
the same minimum are joined into a lumped node. The number of microscopic states within
node i, gi(i = 1, . . . , N), is then proportional to the local density of states. Once such a
node is established, all microscopic states within are supposed to show the same average
properties as far as the rest of the system is concerned, especially with respect to connectivity
to other nodes. This property allows us to ignore the missing overall normalization factor
of the densities of states. The only prerequisite for this procedure is the knowledge of the
ratio of the number of states between any two nodes.

(2) Depending on theδE-distribution, non-zero connectionscij are established between
all the nodesi andj . Preferably, one would choose1E such that only connections between
successive energy slices, and from the node back to itself,cii , are necessary.

(3) Construct the transition matrixM(T = ∞) with elementsfij , wherefij can only
be non-zero ifcij was already non-zero. In general, this transition matrix has to fulfil two
sets of conditions: (a) probability must be preserved:∑

i

fij = 1 for j = 1, . . . , N (A1)

and (b) microscopic reversibility (detailed balance) holds, i.e., each microscopic move can
be reversed (with equal probability atT = ∞). Within the context of this model, this
translates into the conditions

fijgj = fjigi for i, j = 1, . . . , N. (A2)

This condition is fulfilled trivially by allfij that belong to unconnected nodes(fij = fji =
0), and for the casei = j . Note that from conditions (a) and (b) it follows that the vector
g = (gi) is an eigenvector ofM with eigenvalue 1:∑

j

fij gj =
∑

j

fjigi = gi. (A3)

This agrees with the physical interpretation ofgi , since the equilibrium distribution at
T = ∞, which the system should reach fort → ∞, is given by

p
eq

i (T = ∞) = πi = gi

/ ∑
j

gj .

Counting equations and unknowns for a graph withN nodes andF edges(F > N − 1),
we find: for each node, one unknownfii ; and for each edge (ij ), two unknownsfij and
fji , i.e. N + 2F variables. For each node we find one column normalization, and for each
connected pair of nodes, one equation, i.e.N+F equations. Thus, we may addF equations,
i.e. F variables may be chosen freely—within certain limits, of course. Here, one should
try to include any additional information available about the system from, e.g., the step
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size distributionδE. However, one should keep in mind that for the highest node(s) of the
system,fii has to incorporate all the attempted moves that would lead to states above the
lid.

For a tree graph, a common occurrence in lumped models, we haveF = N − 1. Using
an analysis of the step size distribution, it is often reasonable to choose theN −1 additional
conditions by prescribing the values of thefii for i = 1, . . . , N − 1—the only exception
being the top node. As long as the inequality

∑
i gi < gj , where the sum extends over all

nodesi lying below the nodej , holds for all nodesj , the remaining 2N − 1 equations
can be solved forfij with physically reasonable results. This condition holds, e.g., for the
example considered in section 4.

(4) The matrix (fij ) is the desired transition matrix forT = ∞. For finiteT , the standard
‘Boltzmannization’ procedure [45] can be applied: definexi = exp(−Ei/T ); multiply each
entryfij by min(1, xi/xj ); sum each column; add the difference between 1 and the column
sum into the diagonal element. The result is the required transition matrixM(T ). Note that
the vectorπ = (gixi) is an eigenvector ofM with eigenvalue 1:

(M(T ))ij gjxj =
∑
j 6=i

fij min(1, xi/xj )gjxj +
(

1 −
∑
k 6=i

fki min(1, xk/xi)

)
gixi

= gixi +
∑
j 6=i

fij min(1, xi/xj )gjxj −
∑
k 6=i

fki min(1, xk/xi)gixi

= gixi +
∑

j 6=i,Ei>Ej

fij gjxi +
∑

j 6=i,Ei<Ej

fij gjxj

−
∑

k 6=i,Ei>Ek

fikgkxi −
∑

k 6=i,Ei<Ek

fikgkxk

= gixi . (A4)

Thus, the system will converge to the Boltzmann distribution given by

πi = gixi

/ ∑
j

gjxj .

Having determinedM(T ), one can now study the equilibration processes. It is useful to
definezi(n) = pi(n)/pi . Note thatzi(n) → 1 for n → ∞. If for a given accuracya there
exists a numbern0 such that|zi(n) − zj (n)|/zj (n) < a for all n > n0, then the two nodes
i and j are said to be in equilibrium at time stepn0 with accuracya. The smallest such
numbern0 denotes the ‘merger’ or equilibration time of the two nodes,τeq . Plotting τeq

against participating nodes yields the so-called equilibration tree [1].
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